
me@romainthomas.fr

The Poor Man's Obfuscator
Pass The Salt 2022

Contents:
1 Introduction 1

2 __unwind_info & .eh_frame 2

3 Exported Symbols 4
3.1 Creating Fake Exports Names . 4
3.2 Confusing the Exports Names . 5
3.3 Exports Addresses . 7

4 Sections Transformations 9
4.1 ELF . 9
4.2 Mach-O . 11

5 Specific Transformations 14
5.1 LC_FUNCTIONS_STARTS . 14
5.2 .dynsym section . 16

6 Conclusion 17

1. Introduction

The purpose of this paper is to present ELF and Mach-O transformations which impact or
hinder disassemblers like IDA, BinaryNinja, Ghidra, and Radare2. In particular, these transfor-
mations do not modify the assembly code or the data of the binary. The transformations are
focused on modifying the executable file format structures like the sections or the symbols. As
a result, the modified binaries look obfuscated as it will be shown through different examples.

All the modifications presented in this paper are based on LIEF (commit : f8c711d) which
is a library for parsing and modifying executable file formats. The binaries referenced in the
examples are based on the Mbed TLS test suite andmore precisely, programs/test/selftest.
c. This testing program is convenient to verify that the ELF/Mach-O modifications do not break
the binary and do not introduce side effects.

The aim of this work is not to highlight or point out the limits of the disassemblers mentio-
ned in this paper. Actually, all of them have pros and cons with different design decisions
which enable us to enjoy reverse engineering at different levels.

Being not an expert on all these disassemblers, I might also miss some loading options
for which the transformation would not impact the disassembler. I’ll take care of updating
the content of this paper based on the feedback (if any).

i

The content of this paper has been presented at Pass The Salt 2022 on July, 5th using on the
following releases of the disassemblers :

Tools Version Release Date

IDA 7.7.211224 January, 2022

BinaryNinja 3.0 April 2022

Radare2 5.7.0 June 2022

Ghidra 10.1.4 May 2022

1

https://lief-project.github.io/
https://github.com/Mbed-TLS/mbedtls
https://2022.pass-the-salt.org/

2. __unwind_info & .eh_frame

The ELF .eh_frame section and the Mach-O F_unwind_info section contain information that
can be used to get a list of function addresses present in the binary.

These sections are supported and parsed by LIEF which exposes the list of functions through
the Binary.functions attribute :

import lief

target = lief.parse("/bin/ls")
for function in target.functions:

print(function.address)

These sections are also used by the disassemblers to get an initialworklist of functions where
they can start the disassembling.

Thus, we can prevent the disassemblers from using the content of these sections by shuffling
their content. Here is an example for the ELF sections :

for section in [".eh_frame", ".eh_frame_hdr"]:
section = target.get_section(name)
section_content = list(section.content)
random.shufFle(section_content)
section.content = section_content

IDA, BinaryNinja, and Radare2 do not seem to be impacted by this modification but Ghidra
raises an exception when trying to analyse the binary :

FIGURE1 – Error with Ghidra when shuffling the F_unwind_info section

2

Tools Impacted

IDA No

BinaryNinja No

Radare2 No

Ghidra Yes

3

3. Exported Symbols

The first simple, efficient and universal modification we can do on executable formats is crea-
ting fake exports. Thanks to the ELF .eh_frame section and the Mach-O F_unwind_info sec-
tion, we can get a – more or less – accurate list of functions’ start addresses and thus, create
relevant exports.

3.1 Creating Fake Exports Names

We can start to “obfuscate” the binary by creating export names for which the name is ran-
domized. Using this LIEF, such exports can be created by using the add_exported_function
function.

This function is only available for the ELF and Mach-O formats and is not implemented for
the PE format.

!

The random symbol’s name can be generated through the Python random module :

import lief
import random
import string

target = lief.parse("mbedtls_self_test.arm64.macho")

for function in target.functions:
name = "".join(random.choice(string.ascii_letters) for i in range(20))
target.add_exported_function(function.address, name)

target.write("01-mbedtls_self_test.arm64.macho")

In the output of IDA, BinaryNinja, etc we can observe
the list of the random names as we could expect. This
transformation is not very fancy except if the binary to
protect has been compiled with a wrong visibility (like
-fvisibility=default) and in which, we would like to
remove or change the symbols after the compilation.

4

3.2 Confusing the Exports Names

Creating random export names is confusing but a reverse engineer can immediately identify
that the binary has been modified or aims at being protected. In addition, it does not bring
more protection compared to a regular strip of the functions.

Actually, we can still leverage the exports table to add new entries but instead of using random
strings, we can pick real and consistent function names from the original Mbed TLS binary.

target = lief.parse("mbedtls_self_test.arm64.elf")
nostripped = lief.parse("mbedtls_self_test.nostrip.arm64.elf")

SYMBOLS = [s.name for s in non_striped.symbols \
if s.name.startswith("mbedtls_")]

for function in target.functions:
name = random.choice(SYMBOLS)
SYMBOLS.remove(name)
target.add_exported_function(function.address, name)

With such exports, it creates more confusion as it becomes difficult to distinguish the real
Mbed TLS functions from the fake ones.

As we can observe in the previous figure, one function not related to mbedtls_aes_crypt_ctr
has been renamed with this name.

To continue walking along the path of using meaningful names, we can also take names from a
standard library like the libc.so. Compared to the mbedtls_* names, libc’s symbols are usually
recognized by the disassemblers which provide type libraries for such functions. We could also
be a bit more sneaky by taking C++ mangled symbols, from the LLVM libraries (for instance).

But let’s continue with the libc’s symbols. For Android, we can collect libc’s symbols from the
NDK and we also need to avoid exporting symbols with libc’s symbols already imported by the
target :

5

libc = lief.parse("[FF.]toolchains/llvm/prebuilt/linux-x86_64"
"/sysroot/usr/lib/aarch64-linux-android/23/libc.so")

libc_symbols = {s.name for s in libc.exported_symbols}
libc_symbols -= {s.name for s in target.imported_symbols}
libc_symbols = list(libc_symbols)

for function in target.functions:
sym = random.choice(libc_symbols)
libc_symbols.remove(sym)

target.add_exported_function(function.address, sym)

This transformation produces the following output where the figure on the left-hand side is
the original unstripped function and the figure on the right-hand side, the function with the
libc’s symbols exported.

This transformation could be automatically defeated in different ways, like checking if the
libc’s symbols points in the .plt section. It could also be an interesting use case with
binaries statically linked with the libc (which is forbidden on iOS and Android).

!

We also need to make sure that the newly exported libc’s symbols are not used by the loader
to actually resolve libc’s functions imported by other libraries or the library itself. This can be
accomplished by tweaking the symbol’s visibility and the symbol’s binding :

export = target.add_exported_function(function.address, sym)

export.binding = lief.ELF.SYMBOL_BINDINGS.GNU_UNIQUE
export.visibility = lief.ELF.SYMBOL_VISIBILITY.INTERNAL

If the binary targets Linux, the binding must be set to lief.ELF.SYMBOL_BINDINGS.WEAK
instead of lief.ELF.SYMBOL_BINDINGS.GNU_UNIQUE

i

6

3.3 Exports Addresses

One of the challenges when doing static analysis is to identify functions present in the binary.
The binary entrypoint is obviously a good start for disassembling the code but disassemblers
rely on other information from the executable file format like the exports table. It turns out
that the exports table is strongly trusted by the disassemblers, whilst we can actually create
entries with arbitrary symbols and arbitrary addresses.

The previous paragraphs only dealt with the export names. Since exports are always tied with
an address, we can also trick this value. One of these tricks consists in creating exports with a
delta value at the beginning of the function :

for function in target.functions:
address = function.address
address += random.randint(16, 32)

To avoid unaligned instructions, we need to make sure that the delta is aligned on four bytes :

for function in target.functions:
address = function.address
address += random.randint(16, 32)
address -= address % 4

With such a transformation, all the tools : IDA, BinaryNinja, Radare2, Ghidra are wrongly disas-
sembling the code and produce and incomplete control flow graph.

Here is the impact of this transformation when opening the modified binary in BinaryNinja :

The addresses between the original binary and the modified binary are shifted by 0x1000
as a consequence of the LIEF internal mechanism to extend the exports table.

i

7

We can observe a similar output in Radare2 :

Tools Impacted

IDA Yes

BinaryNinja Yes

Radare2 Yes

Ghidra Yes

8

4. Sections Transformations

The transformations based on the exports table have an important impact on the efficiency
and the accuracy of the disassemblers. To enhance our Poor Man’s Obfuscator we can also
apply transformations on the sections of the ELF and Mach-O binary. Whilst both formats
have sections and segments, they are used differently by the loaders. Nevertheless, we can
leverage the confusion made by the disassemblers between segments and sections to mislead
the output of the disassemblers.

4.1 ELF

The ELF format is likely themost error-prone format to parse compared to the PE and theMach-
O format. One of the challenges when parsing an ELF binary is the duality between sections
and segments. Basically, sections are used by the compilers/linker while segments are used
by the loader to run the executable 1. This means that sections should not be used to get the
executable point of view of the binary. On the other hand, segments have a rough granularity
over the data while sections give a better precision about the location and the meaning of the
data.

For instance, it is less trivial to identify the location of the GOT based on the segments, while
using the sections, the GOT is usually mirrored by the .got section.

We could completely get rid of the sections by removing the ELF sections table but disassem-
blers like IDA learned to handle such a case.

Removing the sections table could be used as an anti-debug on Linux. Indeed, gdb is not
able to debug a sectionless binary.

i

So instead of completely removing the sections table or arbitrarily corrupting the section at-
tributes, the idea is to swap some sections, so that we keep a certain level of consistency while
still breaking the overall layout.

This swap configuration is pretty efficient against the different disassemblers :

SWAP_LIST = [
(".rela.dyn", ".data.rel.ro"),
(".got", ".got.plt"),
(".plt", ".text"),
(".dynsym", ".gnu.version"),

]

Radare2 and BinaryNinja faced difficulties with the imported symbols but the assembly code
seems consistent with the original one. On the other hand, Ghidra is not able to import the
binary even before launching the analysis. Lastly, IDA is able to load the binary but it corrupts
the assembly code.

The swap list can be applied to the ELF binary with the following script :

1. This is not exactly true in particular on Android, where the loader enforces consistency between the .dynamic
section and the PT_DYNAMIC segment.

9

target = lief.parse("mbedtls_self_test.arm64.elf")

for (lhs_name, rhs_name) in SWAP_LIST:
print(lhs_name, rhs_name)

lhs = target.get_section(lhs_name).as_frame()
rhs = target.get_section(rhs_name).as_frame()
tmp = lhs.offset, lhs.size, lhs.name, lhs.type, lhs.virtual_address

lhs.offset = rhs.offset
lhs.size = rhs.size
lhs.name = rhs.name
lhs.type = rhs.type
lhs.virtual_address = rhs.virtual_address

rhs.offset = tmp[0]
rhs.size = tmp[1]
rhs.name = tmp[2]
rhs.type = tmp[3]
rhs.virtual_address = tmp[4]

target.write("swapped_alt_mbedtls_self_test.arm64.elf")

The figures below show the differences in IDA between the original ELF binary and the binary
with swapped sections :

This case is pretty interesting because it exists obfuscation techniques which consist in adding
junk code between instructions and jumping on the real instructions with an opaque predicate.
With the swapped sections, IDA is adding itself (likely because of confusion on the relocations)
the junk code, making the function corrupted.

Loading the binary with the option Use SHT disabled does not prevent the corruption.
!

10

Tools Impacted Note

IDA Yes The code is corrupted

BinaryNinja Yes The symbols are corrupted but the
code seems consistent

Radare2 Yes The imports are not recognized but
the code seems consistent

Ghidra Yes We can't import the binary in Ghidra
and especially, launch the analysis

4.2 Mach-O

Compared to the ELF format, the Mach-O format and its loader dyld enforce a stricter layout
such as it is not possible to swap sections without breaking the execution of the binary. Some
of the checks performed by dyld on the layout of the sections are defined in dyld/dyld3/
MachOAnalyze.cpp.

Among these checks, it verifies that :
1. The section’s size is not negative (or overflow)
2. The section’s virtual address and virtual size is within the segment’s virtual ad-
dress/virtual size

3. It enforces section size alignment for special sections like MOD_INIT_FUNC_POINTERS
So basically, sections are stronger bound to segments than for the ELF format. Nevertheless,
within the F_TEXT segment, we can perform a small modification which consists in virtually
shifting the beginning of the F_stub section over the original content of the F_text section.

11

First off, these two sections are within the same F_TEXT segment. Secondly, the transformation
consists of a shift that keeps the global boundaries consistent with the original ones (i.e the
size of all the sections does not change). The F_stubs section is very similar to the ELF .plt
section which is used for memoizing the resolution of the imports. In particular, the F_stubs
section contains assembly code (trampoline stubs) so it shares the same kind of content as
the F_text section.

Programmatically, we can perform the shift with the following piece of code :

SHIFT = 0x100

__text = target.get_section("__text")
__stubs = target.get_section("__stubs")

Reduce the size of the __text section
__text.size -= SHIFT

__stubs.offset -= SHIFT
__stubs.virtual_address -= SHIFT
__stubs.size += SHIFT

Radare2 and BinaryNinja seem not impacted by this transformation while Ghidra and IDA are
strongly impacted.

Ghidra simply refuses to import the binary. The import action comes before the analysis action
so this transformation prevents Ghidra from adding a binary to a project.

On the other hand, IDA is able to load the binary but its output is confusing. In particular, the
main function is broken as we can observe in the following figures :

12

Even if the Mach-O loader enforces a stricter layout on the sections, small wisely chosen
modifications enable to prevent some regular disassemblers from working correctly.

Tools Impacted

IDA Yes

BinaryNinja No

Radare2 No

Ghidra Yes

13

5. Specific Transformations

In the previous paragraphs, we detailed transformations based on structures shared by the
two formats :

1. The exports
2. The sections

This part details other transformations that are specific to the Mach-O or the ELF format.

5.1 LC_FUNCTIONS_STARTS

The LC_FUNCTIONS_STARTS command is a kind of debug command that references a list of
functions present in the binary. This command does not have an impact on dyld when loading
the binary such as it is possible to completely corrupt its content or to modify the addresses
of the functions.

Similar to the exports table, this command is used by the disassemblers to get a trustworthy
list of functions to start disassembling.

The functions listed in this command are just a list of addresses relative to the default base
address (given by the F_TEXT segment virtual address). Using LIEF, we can apply a similar
technique described in Exports Addresses by creating overlaps between two addresses :

functions = [f for f in LC_FUNCTION_STARTS.functions]
for idx, f in enumerate(functions):

Overlap 7 instructions
if idx % 2 F= 0:

functions[idx] += 4 * 7
else:

functions[idx] -= 4 * 7

LC_FUNCTION_STARTS.functions = functions

bin.write("./fstart_mbedtls_self_test.arm64.macho")

This overlapping impacts all the disassemblers except Ghidra.

Tools Impacted

IDA Yes

BinaryNinja Yes

Radare2 Yes

Ghidra No

14

FIGURE1 – BinaryNinja

FIGURE2 – IDA

FIGURE3 – Radare2

15

5.2 .dynsym section

As already mentioned in the previous paragraphs : the ELF format is very tricky. In addition to
the duality between sections and segments, counting the number of imported or the exported
symbols referenced in the .dynsym section is not trivial.

The beginning of the symbols table associated with the imports and the exports is defined
by the DT_SYMTAB entry which is located in the PT_DYNAMIC segment. The DT_* entries which
reference a table are usually paired with another DT_*SZ entry which holds the size of the
table. It turns out, there is an exception for the DT_SYMTAB entry which is not tied to another
entry referencing its size.

On the other hand, the dynamic symbols table is mirrored by the .dynsym section which has a
size. Therefore, it is appealing to use this section to count the number of entries in the table.
As we mentioned in the paragraph Sections Transformations, ELF sections can’t be trusted.

We can leverage this feature of the ELF format to artificially reduce the size of the .dynsym
section :

dynsym = target.get_section(".dynsym").as_frame()

sizeof = dynsym.entry_size
osize = dynsym.size
nsyms = osize / sizeof
dynsym.size = sizeof * 3

This code artificially limits the size of the .dynsym section to 3 symbols.

Tools Impacted Note

IDA Yes
The .dynsym symbols are not truncated when
loading the binary with the option 'Use SHT'
disabled

BinaryNinja No

Radare2 Yes

The ia command does not show all the sym-
bols but they are correctly referenced in the
assembly code (e.g. reloc.puts instead of
sym.imp.puts)

Ghidra Yes The symbols table is truncated and it seems
there is no loading option preventing it

16

6. Conclusion

As it has been demonstrated through this paper, file format modifications can be powerful to
prevent reverse engineering tools from working correctly. File format modifications are less
resilient than classical obfuscation since the original assembly code remains unchanged. On
the other hand, this is a topic that is less explored than regular obfuscation and for which, it
exists less tooling, automation, and literature.

You can find the different scripts used for this work in the following GitHub repository :
romainthomas/the-poor-mans-obfuscator

17

https://github.com/romainthomas/the-poor-mans-obfuscator

	Introduction
	__unwind_info & .eh_frame
	Exported Symbols
	Creating Fake Exports Names
	Confusing the Exports Names
	Exports Addresses

	Sections Transformations
	ELF
	Mach-O

	Specific Transformations
	LC_FUNCTIONS_STARTS
	.dynsym section

	Conclusion

