
DroidGuard
A Deep Dive into SafetyNet

Romain Thomas
May-June, 2022

BlackHat Asia & SSTIC 2022

Introduction

About

• Security engineer at UL - La Ciotat1

• Working on banking app certifications (EMVCo, VISA, …)

• Author of LIEF: https://lief.re

• Enjoy Android, reverse engineering and, obfuscation.

The views and opinions expressed in this work are those of the author’s and do not represent the official position of UL 1

http://tiny.cc/pb5quz
https://github.com/lief-project/LIEF
https://lief.re

SafetyNet

• SafetyNet is a solution developed by Google to verify device’s integrity.

• integrity?

• Rooted

• Custom firmware

• Emulators

• Bootloader unlocked

• …

• It is used by a large number of app developers who need be sure their applications
do not run on a compromised environment (games, fintech, messaging apps, …)

2

SafetyNet

• SafetyNet is a solution developed by Google to verify device’s integrity.

• integrity?

• Rooted

• Custom firmware

• Emulators

• Bootloader unlocked

• …

• It is used by a large number of app developers who need be sure their applications
do not run on a compromised environment (games, fintech, messaging apps, …)

2

SafetyNet

• SafetyNet is a solution developed by Google to verify device’s integrity.

• integrity?

• Rooted

• Custom firmware

• Emulators

• Bootloader unlocked

• …

• It is used by a large number of app developers who need be sure their applications
do not run on a compromised environment (games, fintech, messaging apps, …)

2

SafetyNet

• SafetyNet is a solution developed by Google to verify device’s integrity.

• integrity?

• Rooted

• Custom firmware

• Emulators

• Bootloader unlocked

• …

• It is used by a large number of app developers who need be sure their applications
do not run on a compromised environment (games, fintech, messaging apps, …)

2

SafetyNet API

1 SafetyNet.getClient(this).attest(nonce, API_KEY)
2 .addOnSuccessListener(this) {
3 F/ Indicates communication with the service was successful.
4 F/ Use response.getJwsResult() to get the result data.
5 }
6 .addOnFailureListener(this) { e F>
7 F/ An error occurred while communicating with the service.
8 if (e is ApiException) {
9 F/ An error with the Google Play services API contains some

10 F/ additional details.
11 val apiException = e as ApiException
12
13 F/ You can retrieve the status code using the
14 F/ apiException.statusCode property.
15 } else {
16 F/ A different, unknown type of error occurred.
17 Log.d(FragmentActivity.TAG, "Error: " + e.message)
18 }
19 }
20 }
21
22
23

→ The developer provides:
1. A nonce to avoid replay attack
2. An API_KEY to be authenticated by
the Google’s backend

← SafetyNet returns:
1. A JWS token2 that wraps the device’s
integrity status

2. Or, an error

2Signed by Google’s private key (in the backend)

3

About This Talk

Why this talk?

4

Inside Android’s SafetyNet Attestation

Inside Android’s
SafetyNet Attestation

Collin Mulliner & John Kozyrakis

Black Hat Europe 2017 5

Magisk & Magisk Hide

6

Magisk & Magisk Hide

Attestation Failed!

ctsProfile

basicIntegrity

evalType HARDWARE

Success!

ctsProfile

basicIntegrity

evalType HARDWARE

7

basicIntegrity vs ctsProfileMatch

Basic Integrity

”A more lenient verdict of device integrity.
If only the value of basicIntegrity is
true, then the device running your app
likely wasn’t tampered with. However, the
device hasn’t necessarily passed Android
compatibility testing.”

CTS Profile Match

”A stricter verdict of device integrity. If the
value of ctsProfileMatch is true, then
the profile of the device running your app
matches the profile of a device that has
passed Android compatibility testing and
has been approved as a Google-certified
Android device.”

https://developer.android.com/training/safetynet/attestation

8

https://developer.android.com/training/safetynet/attestation

basicIntegrity vs ctsProfileMatch

Basic Integrity

• Rooted device
• Emulator
• API Hooking

CTS Profile Match

• Rooted device
• Emulator
• API Hooking

+ Bootloader unlocked
+ Device with custom ROM (not rooted)
+ Genuine but uncertified device, such
as when the manufacturer doesn’t
apply for certification

9

Magisk v24.0

Magisk v24.0
MagiskHide Removal

I have lost interest in fighting this battle for quite a while;
plus, the existing MagiskHide implementation is flawed in so many ways.

Decoupling Magisk from root hiding is, in my opinion, beneficial to the community.
Ever since my announcement on Twitter months ago, highly effective "root hiding" modules
(much MUCH better than MagiskHide) has been flourishing, which again shows that people are
way more capable than I am on this subject.

So why not give those determined their time to shine, and let me focus on improving Magisk
instead of drowning in the everlasting cat-and-mouse game

Magisk v24.0 Release Note – January 2022

10

SafetyNet

1 SafetyNet.getClient(this).attest(nonce, API_KEY)
2 .addOnSuccessListener(this) {
3 F/ Indicates communication with the service was successful.
4 F/ Use response.getJwsResult() to get the result data.
5 }
6 .addOnFailureListener(this) { e F>
7 F/ An error occurred while communicating with the service.
8 if (e is ApiException) {
9 F/ An error with the Google Play services API contains some

10 F/ additional details.
11 val apiException = e as ApiException
12
13 F/ You can retrieve the status code using the
14 F/ apiException.statusCode property.
15 } else {
16 F/ A different, unknown type of error occurred.
17 Log.d(FragmentActivity.TAG, "Error: " + e.message)
18 }
19 }
20 }
21
22
23

11

SafetyNet

1 SafetyNet.getClient(this).attest(nonce, API_KEY)
2 .addOnSuccessListener(this) {
3 F/ Indicates communication with the service was successful.
4 F/ Use response.getJwsResult() to get the result data.
5 }
6 .addOnFailureListener(this) { e F>
7 F/ An error occurred while communicating with the service.
8 if (e is ApiException) {
9 F/ An error with the Google Play services API contains some

10 F/ additional details.
11 val apiException = e as ApiException
12
13 F/ You can retrieve the status code using the
14 F/ apiException.statusCode property.
15 } else {
16 F/ A different, unknown type of error occurred.
17 Log.d(FragmentActivity.TAG, "Error: " + e.message)
18 }
19 }
20 }
21
22
23

DroidGuard

GMS Core

Protobuf Message

SafetyNet API

app.apk

play-services-safetynet
Google Backend

SafetyNetClient.attest(
nonce,
API_KEY

);

1. Intent to trigger SafetyNet processing
2. DroidGuard request
3. Download the VM bytecode
4. Return the analysis from DroidGuard
5. Protobuf += DroidGuard results
6. Return the JWS based on the protobuf data
7. Forward the result to the application

SafetyNet

11

SafetyNet

1 SafetyNet.getClient(this).attest(nonce, API_KEY)
2 .addOnSuccessListener(this) {
3 F/ Indicates communication with the service was successful.
4 F/ Use response.getJwsResult() to get the result data.
5 }
6 .addOnFailureListener(this) { e F>
7 F/ An error occurred while communicating with the service.
8 if (e is ApiException) {
9 F/ An error with the Google Play services API contains some

10 F/ additional details.
11 val apiException = e as ApiException
12
13 F/ You can retrieve the status code using the
14 F/ apiException.statusCode property.
15 } else {
16 F/ A different, unknown type of error occurred.
17 Log.d(FragmentActivity.TAG, "Error: " + e.message)
18 }
19 }
20 }
21
22
23

12

DroidGuard

Google Backend

SafetyNetData = {
nonce = [ca ee ...]
packageName = "com.demo.snet"
signatureDigest = [66 49 ...]
fileDigest = [fa 0a ...]
gmsVersionCode = 213918046
suCandidates = {

fileName = "/system/bin/su"
digest = [25 53 ...]

 }
seLinuxState = {

supported = true
enabled = true

 }
currentTimeMs = 1638672572674
googleCn = false

com.google.android.gms

/data/app/[...]/com.google.android.gms/base.apk
com.google.android.gms.unstable

/data/data/com.google.android.gms/app_dg_cache/<hash>/the.apk

Protobuf Message

Code written in Java/Kotlin, lightly
obfuscated.

Code mostly written in C++
and obfuscated (VM, MBA, ...)

DroidGuardResult = "CgZpApMYiWYSi9cB [..]"

basicIntegrity

CTS Profile

13

Why This Talk?

Goal of this talk
• Understand how SafetyNet works
thanks to DroidGuard

• Describe the integrity’s checks behind
SafetyNet

Non-goal of this talk
• Show methods to bypass or tricks the
hardware attestation

• Promote/release a new click and play
tool to replace MagiskHide

14

Why This Talk?

Goal of this talk
• Understand how SafetyNet works
thanks to DroidGuard

• Describe the integrity’s checks behind
SafetyNet

Non-goal of this talk
• Show methods to bypass or tricks the
hardware attestation

• Promote/release a new click and play
tool to replace MagiskHide

14

DroidGuard:
The VM behind SafetyNet

SafetyNet

DroidGuardResult = "CgZpApMYiWYSi9cB [..]"
1. How this token is generated?

2. What kind of information is stored?

15

How this token is generated?

/data/data/com.google.android.gms/app_dg_cache/<hash>/the.apk

com.google.ccc.abuse.droidguard.DroidGuard 1. APK updated every ∼ 2 weeks from the
Google’s servers3

2. The Java layer is pretty small: about ∼ 60
classes.

3. Embed a native library that implements an
obfuscated VM

3not from the PlayStore

16

How this token is generated?

17

DroidGuard VM

To highlight the logic behind SafetyNet, we have to understand how the bytecode
behaves within the VM and how the VM is designed.

18

DroidGuard VM: Registers

libd23DDF14B425.so

• 256 typed registers

0. Pointer

1. Double

2. jobject (JNI object)

3. Int

4. Long

5. String/Buffer

6. None

19

DroidGuard VM: Registers

libd23DDF14B425.so

• 256 typed registers, shuffled for each new version of the VM

0. String/Buffer

1. Int

2. Long

3. Double

4. jobject (JNI object)

5. Pointer

6. None

20

VM: How to Write a Register Value?

[READ]
Register value decoding

(with MBA)

[WRITE]
Register value encoding

(with MBA)

In this version, register type
5 is a JNI Object

2 matches a std::string

env->DeleteGlobalRef(reg_value)

std::string destructor
with check for small
strings optimization

Make sure the original register's
value is properly released

21

DroidGuard VM: The Handlers

libd23DDF14B425.so

The DroidGuard VM is composed of a set of handlers that have a
dedicated purpose:

• Perform a syscall
• Resolve a function (dlsym)
• Perform an add, xor, mult, div, …
• Read an encoded buffer
• Perform a SHA2564

• Call a JNI function
• …

4Based on BoringSSL

22

VM Handlers

libd23DDF14B425.so

23

VM Overview

DroidGuard
finish

VM Handler VM HandlerVM Handler

DroidGuard
Run

Resolve the Handler

Read/Decrypt opcode

Init registers to None (6)

Init crypto keys

DroidGuard
Init

VMH: Call Function vm.call(regs[0x9C],
{regs[0x5b], regs[0x87})

vm.call("clock_gettime",
{1, malloc(0x10));

clock_gettime(MONOTONIC, ×pec);

VMH: Allocate BuƋer vm.regs[0x87]={0, malloc(0x10)}

VMH: Set Register Int vm.regs[0x40]={0, 0xf4240}

VMH: Set Register Int vm.regs[0x33]={0, 0x3e8}

VMH: Set Register Byte vm.regs[0xea]={0, 0x10}

VMH: Set Register Byte vm.regs[0x97]={0, 0}

vm.regs[0x72]={0, 2}VMH: Set Register Byte

vm.regs[0x5b]={0, 1}VMH: Set Register Byte

vm.regs[0x5b]={2, "ige"}VMH: Read BuƋer

vm.regs[0x9c]={4, dlsym(regs[0x5b])}VMH: Resolve Symbol

vm.regs[0x5b]={2, "clock_gettime"}VMH: Read BuƋer

The first instructions are used for detecting debuggers
(time-based)

DroidGuard.initNative

flow: Attest, Checkin

Bytecode

DroidGuard.ssNative

SHA256

SafetyNet Data:
nonce = [ca ee ...]
packageName = "com.demo.snet"

 ...

"CgZpApMYiWYSi9cB [..]"

24

Device’s Integrity Checks

Device’s Integrity Checks

With a good understanding of the VM and its handlers, we can target a few of them5 to
highlight the integrity checks.

5Mostly handlers which perform syscalls, calls, JNI calls

25

Example

[016667] VMH_read_buffer() {
0x039748: vmF>decode(sp!968, 0x4e2f, 0x2): 0x4e31
0x0397b8: stdF:string(sp!968, 0x10, 0x0)
0x0397fc: vmF>decode(sp!967, 0x4e31, 0x10): 0x4e41
0x0398a4: vmF>decode(sp!94c, 0x4e41, 0x1): 0x4e42
0x039910: operator_new(0x18): 0x6f08b44be0
0x03991c: stdF:stringF:copy(malloc@0x6f08b44be0, sp!968)
0x03992c: vm_set_register(0x4c, 0x2, 0x6f08b44be0): "/data/local/xbin"

}
F/ FF.
[016674] VMH_call_function() {
0x03c75c: vmF>read_byte_vector(stdF:vector<uint8_t>@sp!980, KEY): {0x09, 0x4c, 0x3d, 0x09}
0x03c780: vmF>decode(sp!950, 0x4872, 0x1): 0x4873
0x03c7e0: vmF>decode(sp!950, 0x4873, 0x1): 0x4874
0x03c824: vmF>get_pointer(0xa): 0x6e6de1459c
0x03c834: vmF>read_register(0x7b): 0x30
0x03c844: operator_new(0x10): 0x6ef8a9c470
0x03c87c: memcpy(0x6ef8a9c470, 0x6e84242788, 0x10)
0x03c8a0: vmF>prepare_params(in: {09,4c,3d,09},

{&vm_sycall, 0x30, 0x0, 0x6f48d4fb61, 0x4, 0x0},
{"/data/local/xbin"}')

{
faccessat("/data/local/xbin"): 0xfffffffffffffffe

}
0x03c930: vmF>set_register(0xc9, 0x0, 0xfffffffe)

} 26

Root Detection: Files Checks

• /data/local/tmp/su

• /system/bin/.ext/su

• /system/bin/su

27

Root Detection: System Properties

• init.svc.magisk_service

• persist.magisk.hide

• ro.magisk.disable

28

”Signs of active attacks, such as API hooking”

0x2171c VMH_read_buffer() {
0x039748: vmF>decode(sp!668, 0x3ad0, 0x2): 0x3ad2
0x0397b8: stdF:string(sp!668, 0x15, 0x0)
0x0397fc: vmF>decode(sp!667, 0x3ad2, 0x15): 0x3ae7
0x0398a4: vmF>decode(sp!64c, 0x3ae7, 0x1): 0x3ae8
0x039910: operator_new(0x18): 0x7c21437560
0x03991c: basic_string_copy(malloc@7c21437560, sp!668): "'6V+0F`C"
0x03992c: vmF>set_register(0x6f, 0x2, 0x7c21437560): ":libriru_edxposed.so:"

}
0x2171c VMH_find_in_string() {
0x043140: vmF>decode(sp!660, 0x3ae9, 0x1): 0x3aea
0x0431b8: vmF>decode(sp!660, 0x3aea, 0x1): 0x3aeb
0x043214: vmF>decode(sp!660, 0x3aeb, 0x1): 0x3aec
0x043270: vmF>decode(sp!660, 0x3aec, 0x1): 0x3aed
0x043304: vmF>read_register(0x9): 0x0
regs[0xac].value F> 0xc8e697a25b30b3fb | ":linker64:app_process64:[vdso]:libandroid_runtime.so:libbinder.so: [FF.]
regs[0x6f].value F> 0x239a5f05c8953bcf | ":libriru_edxposed.so:"
F/ FF.

}

29

”Signs of active attacks, such as API hooking”

• frida-agent-64.so

• libriru_snet-tweak-riru.so

• libsandhook.so

30

Device’s Integrity Checks

Last but not least …

31

NSO’s Pegasus

32

Telemetry

Telemetry

In addition to pre-defined boolean checks6. DroidGuard collects information about the
device (system properties, mount information, …).

These information are used by the Google backend to enhance the device’s integrity
checks.

6Whether a file exists, if a library is present in memory, …

33

Telemetry

ro_zygote = "zygote64_32"
pointer_info = "7f3669240000-7f3669241000 rw-p 00000000"
cmdline = "com.google.android.gms.unstable"
env_path = "/product/bin:/apex/com.android.runtime/bin:/apex/com.android.art/bin:[FF.]"
cache_dir = "/data/user/0/com.google.android.gms/cache"

vbmeta_device_state = "locked"
vbmeta_digest = "5c43a03e2a47d742deefb3a05c2bcdd1afadedb89ddbdba7651f99fdc92438f8"
verifiedbootstate = "green"
security_patch = "2021-12-12"
f134 = "com.google.android.gms" # Output of com.google.android.gms.droidguard.loader.RuntimeApi.c()
kernel_info = "5.4.223-ga45ffa6db-74ceeb #1 SMP PREEMPT Tue Jul 21 01:52:07 UTC 2021"
Flow = "attest"
installer = "com.android.vending"
proc_self_stat = "561 (id.gms.unstable) S 949 949 0 0 -1 107832 324 0 0 0 "

34

Telemetry

f242 = [
List of KeyStore.getCertificateChain (Hardware attestation F> CTS Profile)

]
mount_info = [

"/dev/block/loop22 /apex/com.android.art@1" "/dev/block/loop22 /apex/com.android.art",
"/dev/block/loop23 /apex/com.android.i18n@1" "/dev/block/loop23 /apex/com.android.i18n"
"/dev/block/loop27 /apex/com.android.vndk.v30@1" "/dev/block/loop27 /apex/com.android.vndk.v30"

]
proc_self_maps_info = [

"/apex/com.android.art/javalib/bouncycastle.jar",
"/system/framework/boot-ims-common.vdex",
"/data/data/com.google.android.gms/app_dg_cache/1FEFB755F7DFAAFB69E71C4B872D96A200EC65BF/the.apk"
FF.

]
current_class_loaders = """
dalvik.system.PathClassLoader[

DexPathList[
[zip file "/data/app/F~**********************F=/com.google.android.gms-*************-******-*AF=/base.apk"]
nativeLibraryDirectories=[/system/lib64, /system/product/lib64]

]
]
"""

35

Telemetry & Device’s Integrity Checks

DroidGuardResult = "CgZpApMYiWYSi9cB [..]"

/data/local/tmp/su
/vendor/bin/su

init.svc.magisk_service
persist.magisk.hide
ro.magisk.disable

libriru_snet-tweak-riru.so
frida-agent-64.so
libva-native.so
libriru_edxp.so

proc_self_maps_info = [
 "/apex/com.android.art/javalib/bouncycastle.jar",
 "/system/framework/boot-ims-common.vdex",
 ...
]

vbmeta_device_state = "locked"
vbmeta_digest = "5c43a03e2a47d742deefb3a05 [...]"
verifiedbootstate = "green"
security_patch = "2021-12-12"
f134 = "com.google.android.gms"
kernel_info = "5.4.223-ga45ffa6db-74ceeb [...]
flow = "attest"
installer = "com.android.vending"
proc_self_stat = "561 (id.gms.unstable) S [...] "

True False True Protobuf Encoded

Pegasus

the.apk

DroidGuard

36

Conclusion

Conclusion

After investigation, it seems that DroidGuard is not only used to run Google’s bytecode
related to SafetyNet.

It can also run programs which are named:

attest/full : SafetyNet checks (∼ 70 KiB)
msa-f : ??? (∼ 7 KiB)

checkin : for Google account enrollment? (∼ 50KiB)
ad_attest : to prevent ad-frauds? (∼ 50KiB)

federatedMachineLearningReduced : ??? (∼ 50 KiB)
po-token-fast,hades_persephone_risk,smartsetup_2,dcs_get_verdict …

37

Conclusion

After investigation, it seems that DroidGuard is not only used to run Google’s bytecode
related to SafetyNet.

It can also run programs which are named:

attest/full : SafetyNet checks (∼ 70 KiB)
msa-f : ??? (∼ 7 KiB)

checkin : for Google account enrollment? (∼ 50KiB)
ad_attest : to prevent ad-frauds? (∼ 50KiB)

federatedMachineLearningReduced : ??? (∼ 50 KiB)
po-token-fast,hades_persephone_risk,smartsetup_2,dcs_get_verdict …

37

Conclusion

What is the cost of such reverse engineering?

38

What is the cost of such reverse engineering?

1. The reverse engineering of DroidGuard is not trivial and requires tooling:

• Code lifting/emulation with QBDL and Unicorn

• Dynamic analysis with Frida Gum7

• Static code analysis with IDA

• MBA simplifications with msynth on the top of Miasm
• Dedicated tools to inspect the VM:

• Dump the VM’s registers
• Decode the encoded buffers
• …

7Combined with LIEF for the runtime integrity bypass

39

What is the cost of such reverse engineering?

2. Regular updates which occur ∼ 2 weeks requires to automate the process.8

• To have a good overview of the design: ∼ 5 weeks

• To create dedicated tools: ∼ 2 weeks

• In the end, a new version of the VM could be reversed9 in a couple of hours

8Or you give-up
9Identifying the VM handlers, the mapping of the registers types, the encodings, …

40

What is the cost of such reverse engineering?

3. Conclusion:

• Well protected and difficult to circumvent

• The basicIntegrity flag can – in the end – be bypassed without Magisk Hide10

10PoC: https://www.romainthomas.fr/projects-images/safetynet/

41

https://www.romainthomas.fr/projects-images/safetynet/

Conclusion

What are the limits of the SafetyNet’s design?

42

What are the limits of the SafetyNet’s design?

The VM runs in a dedicated process11 and the checks are done in this memory space.

⇒ They cannot detect local tampering in the application that performed the SafetyNet
request.

11com.google.android.gms.unstable

43

What are the limits of the SafetyNet’s design?

This is why MagiskHide only had to target com.google.android.gms.unstable12 to
bypass SafetyNet.

12and, to a lesser extent com.google.android.gms

44

Conclusion

The hidden messages …

45

The hidden messages …

”What brings you to these parts of town?
Say hi to droidguard-hello+xxxxxxxxxxxxxxxx@google.com”

46

The hidden messages …

”You just keep pulling back the layers!
Say hi to droidguard-hello+xxxxxxxxxxxxxxxx@google.com”

47

The hidden messages …

1. The email’s suffix is unique per-bytecode

2. The bytecode is unique per-request

3. Telemetry data embeds enough information to uniquely identify your device

48

The hidden messages …

1. The email’s suffix is unique per-bytecode

2. The bytecode is unique per-request

3. Telemetry data embeds enough information to uniquely identify your device

48

The hidden messages …

1. The email’s suffix is unique per-bytecode

2. The bytecode is unique per-request

3. Telemetry data embeds enough information to uniquely identify your device

48

Hardware Attestation

KeyStore ks = KeyStore.getInstance("AndroidKeyStore");
ks.load(null);
ks.aliases(); F/ Iterate and check the aliases

long rndLong = (new Random()).nextLong();
String alias = "unstable.<hash>." + rndLong.toString();

KeyGenParameterSpec spec = new KeyGenParameterSpec.Builder(alias, KeyProperties.PURPOSE_SIGN)
.setAlgorithmParameterSpec(new ECGenParameterSpec("secp256r1"))
.setDigests(KeyProperties.DIGEST_SHA512)
.setAttestationChallenge(<unique number>)
.build();

KeyGenerator keyGenerator = KeyPairGenerator.getInstance("EC", "AndroidKeyStore");
keyGenerator.initialize(spec);
keyGenerator.generateKeyPair();

Certificate certificates[] = keyStore.getCertificateChain(alias);

49

Thank you for your attention

https://github.com/romainthomas/droidguard-samples

Questions?

@rh0main

49

https://github.com/romainthomas/droidguard-samples
https://twitter.com/rh0main

Thank you for your attention

https://github.com/romainthomas/droidguard-samples

Questions?

@rh0main

49

https://github.com/romainthomas/droidguard-samples
https://twitter.com/rh0main

Thank you for your attention

https://github.com/romainthomas/droidguard-samples

Questions?

@rh0main 49

https://github.com/romainthomas/droidguard-samples
https://twitter.com/rh0main

	Introduction
	About

	DroidGuard: The VM behind SafetyNet
	How this token is generated?
	DroidGuard VM: The Characteristics

	Device's Integrity Checks
	Telemetry
	Conclusion

